Normalized Log-Linear Interpolation of Backoff Language Models is Efficient

نویسندگان

  • Kenneth Heafield
  • Chase Geigle
  • Sean Massung
  • Lane Schwartz
چکیده

We prove that log-linearly interpolated backoff language models can be efficiently and exactly collapsed into a single normalized backoff model, contradicting Hsu (2007). While prior work reported that log-linear interpolation yields lower perplexity than linear interpolation, normalizing at query time was impractical. We normalize the model offline in advance, which is efficient due to a recurrence relationship between the normalizing factors. To tune interpolation weights, we apply Newton’s method to this convex problem and show that the derivatives can be computed efficiently in a batch process. These findings are combined in new open-source interpolation tool, which is distributed with KenLM. With 21 out-of-domain corpora, log-linear interpolation yields 72.58 perplexity on TED talks, compared to 75.91 for linear interpolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Interpolation in Decision Tree LM

In the face of sparsity, statistical models are often interpolated with lower order (backoff) models, particularly in Language Modeling. In this paper, we argue that there is a relation between the higher order and the backoff model that must be satisfied in order for the interpolation to be effective. We show that in n-gram models, the relation is trivially held, but in models that allow arbit...

متن کامل

A class-based language model for large-vocabulary speech recognition extracted from part-of-speech statistics

A novel approach is presented to class-based language modeling based on part-of-speech statistics. It uses a deterministic word-to-class mapping, which handles words with alternative part-of-speech assignments through the use of ambiguity classes. The predictive power of word-based language models and the generalization capability of class-based language models are combined using both linear in...

متن کامل

Efficient construction of long-range language models using log-linear interpolation

In this paper we examine the construction of long-range language models using log-linear interpolation and how this can be achieved effectively. Particular attention is paid to the efficient computation of the normalisation in the models. Using the Penn Treebank for experiments we argue that the perplexity performance demonstrated recently in the literature using grammar-based approaches can ac...

متن کامل

Log-linear interpolation of language models

A new method to combine language models is derived. This method of log-linear interpolation (LLI) is used for adaptation and for combining models of di erent context length. In both cases LLI is better than linear interpolation.

متن کامل

Combination of Recurrent Neural Networks and Factored Language Models for Code-Switching Language Modeling

In this paper, we investigate the application of recurrent neural network language models (RNNLM) and factored language models (FLM) to the task of language modeling for Code-Switching speech. We present a way to integrate partof-speech tags (POS) and language information (LID) into these models which leads to significant improvements in terms of perplexity. Furthermore, a comparison between RN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016